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Moment Inequalities

Commonly studied economic models give inequality restrictions on
moments.

EP [mj(Xi, θ)] ≤ 0, j = 1, · · · , J

where Xi ∈ X is a vector of observable variables and m : X ×Θ→ RJ is
known up to a finite dimensional parameter θ ∈ Θ.

This is often the case when the researcher wants to avoid assumptions that
are not based on economic theory but rather made for convenience.

Examples
• Regression models with missing observations or censored variables,

where one does not know how censoring occurred.
• Incomplete economic models, which predict multiple outcome values,

but one does not know how the selection mechanism works.



Challenges

1. Identification: Point identification of θ is not guaranteed.
→ Partial Identification

2. Estimation: What does consistency or efficiency mean?

3. Inference: How do we test hypotheses regarding θ?
How do we construct confidence sets?



Identification

If point identification does not hold, we cannot fully recover the parameter of
interest from data.

Still, moment restrictions are often informative. They can be used to bound
the set of parameter values that are consistent with observations.

When this is the case, θ is said to be partially identified, and the set of
observationally equivalent parameter values are called the identified set,
denoted by ΘI(P ).

ΘI(P ) =
{
θ ∈ Θ : EP [mj(Xi, θ)] ≤ 0, j = 1, · · · , J

}
.

Charles Manski pioneered the formal study of partially identified models.
For a summary of his work, see Manski (2003).



Ex.1: Entry Game (Tamer, 2003)

Moment inequalities arise naturally in models with multiple equilibria.
Consider two firms with the following payoffs:

πj = (uj − θjs−j)sj , j = 1, 2,

where uj ∼ U [0, 1] independently, sj ∈ {0, 1} is firm j’s entry decision, and
s−j is the other firm’s entry decision.

The payoffs can be summarized as follows.

Firm 2
0 1

Firm 1 0 (0, 0) (0, u2)
1 (u1, 0) (u1 − θ1, u2 − θ2)

The parameter of interest is the strategic interaction effects:
θ ≡ (θ1, θ2) ∈ [0, 1]2. Suppose that u ≡ (u1, u2) is known to the firms but not
to the econometrician.



Ex.1: Entry Game
This is an incomplete model, which has the structure

s ∈ G(u|z, θ),
where the correspondence G : U ×Z ×Θ→ S gives the set of outcome
values predicted by the model.

Suppose the observed outcome si is a pure strategy Nash equilibrium
(PSNE). Then, G is given by

G (u1, u2 | θ) =


(1, 1) if uj > θj ∀j
(1, 0) u1 > θ1, u2 < θ2

(0, 1) u1 < θ1, u2 > θ2

{(1, 0) , (0, 1)} if uj < θj ∀j

The model then tells us

Pr(s ∈ A) = P (A) =

∫
pu(A)dmθ, pu(G(u|θ)) = 1,

where mθ is the distribution of u (known up to parameter θ), and pu is the
conditional distribution of si given u (unknown selection mechanism).



Ex.1: Entry Game

Equilibrium selection mechanism is a difficult object to handle empirically.
How should one proceed?

Option 1: Complete the model.
• Transform si (e.g. # of entrants) so that the transformed model is

complete. (Bresnahan & Reiss, 1991)→ loss of information.
• Parameterize the selection mechanism. (Bajari, Hong, & Ryan, 2010)
→ The conclusion depends on the additional assumption used to
complete the model.

Option 2: Use restrictions given by the incomplete model (Tamer, 2003)
• Without further assumptions, the sharp identified set is

ΘI(P ) = {θ ∈ Θ : P (A) =

∫
pu(A)dmθ, pu(G(u|θ)) = 1}.

However, the form of ΘI(P ) is not tractable as it involves pu.



Ex.1: Entry Game

One can generate moment inequalities from the model to characterize
ΘI(P ). For example,

Pr(s = (1, 1)) = (1− θ1)(1− θ2)

Pr(s = (1, 0)) ≥ θ2(1− θ1)

Pr(s = (1, 0)) ≤ θ2.

Note that the probabilities on the left are identified. These restrictions
partially identify θ.

Note:
• Pr(s = (1, 1)) can be written as EP [1{s = (1, 1)}]. Hence, they are

moment equality and inequality restrictions.
• Do these (in)equalities fully characterize the sharp identified set?
→ There is a systematic way to generate sharp restrictions.



Ex.1: Entry Game

By Choquet’s theorem, (see Galichon and Henry, 2011, Molchanov, 2005)
the sharp identification region is

ΘI(P ) = {θ ∈ Θ : νθ(A) ≤ P (A) ≤ ν∗θ (A)},
where
• νθ(A) = mθ(G(u|θ) ⊆ A) is the lower bound for p(A)

It is called a containment functional or belief function.
• ν∗θ (A) = mθ(G(u|θ) ∩A 6= ∅) is the upper bound for p(A)

It is called a capacity functional or the conjugate of the belief function.

In the previous example, we have

A νθ (A) ≡ min Pr (A) ν∗θ (A) ≡ max Pr(A)
A1 = {(1, 1)} (1− θ1) (1− θ2) (1− θ1) (1− θ2)
A2 = {(1, 0)} (1− θ1) θ2 θ2

A3 = {(0, 1)} θ1 (1− θ2) θ1

Ac1 = A4 = {(1, 0) , (0, 1)} θ1 + θ2 − θ1θ2 θ1 + θ2 − θ1θ2

Ac2 = A5 = {(1, 1) , (0, 1)} (1− θ2) 1− θ2 (1− θ1)
Ac3 = A6 = {(1, 1) , (1, 0)} (1− θ1) 1− θ1 (1− θ2)
S = {(1, 1) , (1, 0) , (0, 1)} 1 1



Intuition

Why these inequalities?

The key intuition is that s is a selection of a random set G(u|θ):
(i.e. s is a random variable taking values within the random set G(u|θ) with
probability 1.)

A

Ω

s

G(u|θ)

s′

G(u′|θ)

G(u|θ) ⊆ A ⇒ s ∈ A ⇒ G(u|θ) ∩A 6= ∅
These relationships imply the lower and upper bounds (that turn out to be

sharp) on p(A).



Moment (In)equalities
In many incomplete models, one can characterize the (sharp) identified set
ΘI(P ) as:

ΘI(P ) =
{
θ ∈ Θ :EP [mj(Xi, θ)] ≤ 0, j = 1, · · · , J1

EP [mj(Xi, θ)] = 0, j = J1 + 1, · · · , J2

}
.

Comments:
• Games with mixed strategy Nash equilibria or correlated equilibria can

also be analyzed using conditional moment inequalities (Beresteanu,
Molchanov, Molinari, 2011)

• Incomplete models can occur in a variety of contexts:
• Generalized IV models (Chesher & Rosen, 2012)
• Auctions (Haile & Tamer, 2003)

• If the sampling process reveals P asymptotically, ΘI(P ) is the best
object one can recover from the observations.



Estimation

How can one estimate ΘI(P ) from data?

Form a population criterion function based on moments.
For example, for a positive definite matrix W , define

Q(θ) ≡ EP [m(Xi, θ)]
′
+W (θ)EP [m(Xi, θ)]+,

where y+ = max{y, 0}. This criterion function is minimized on ΘI(P ).

Construct an estimator of ΘI(P ) using a sample analog.

Qn(θ) ≡ (
1

n

n∑
i=1

m(Xi, θ))
′
+W (θ)(

1

n

n∑
i=1

m(Xi, θ))+

Note: If moment equalities are present, one can add a GMM-type criterion
function to Qn.



Consistency

Define a level-set estimator by

Θ̂n(c) ≡ {θ : nQn(θ) ≤ c}.

Chernozhukov, Hong, and Tamer (2007) show that, if ΘI(P ) is well-behaved
(compact, non-empty interior, boundary does not involve “thin parts”), the
level-set estimator Θ̂n(0) (argmin of Qn) is consistent in the following sense:

dH(Θ̂n(0),ΘI(P ))
p→ 0,

where dH(A,B) ≡ max {supa∈A infb∈B ‖a− b‖, supb∈B infa∈A ‖a− b‖} is the
Hausdorff distance between two sets.

In more general cases (e.g. potentially overidentified by moment
(in)equalities), one can use a sequence of levels c = cn that slowly diverges
e.g. cn = lnn.



Inference
Consider unconditional moment inequalities:

EP [mj(Xi, θ)] ≤ 0, j = 1, · · · , J1.

How can one construct a confidence set (CS)?

What to cover?
There are two types CS1n, CS2n of confidence sets:

lim inf
n→∞

inf
P∈P

inf
θ∈ΘI(P )

P (θ ∈ CS1n) ≥ 1− α

lim inf
n→∞

inf
P∈P

P (ΘI(P ) ⊆ CS2n) ≥ 1− α.

• CS1n covers each θ ∈ ΘI(P ) (hence the true parameter value) with
probability 1− α asymptotically.

• CS2n covers the whole identified set ΘI(P ) with probability 1− α
asymptotically.

It is also desirable for CSs to ensure coverage uniformly over a reasonable
class of DGPs.



CS for θ: (Andrews & Soares, 2010)

Consider testing the hypothesis H0 : θ ∈ ΘI(P ). One can collect all
parameter values that pass the test and form a confidence region.

Using the sample criterion function Qn, define a test statistic:

Tn(θ) ≡ nQn(θ).

Construct a CS by

CSn ≡ {θ ∈ Θ : Tn(θ) ≤ cn(θ)},

where the critical value cn(θ) must be chosen in such a way that CSn
covers θ with probability 1− α asymptotically.

A challenge: The (null) limiting distribution of Tn changes depending on
(θ, P ).



The limiting behavior of the moments
At each θ ∈ ΘI(P ) (and under a fixed P ):

√
n(

1

n

n∑
i=1

mj(Xi, θ))+

=
(√
n
{ 1

n

n∑
i=1

mj(Xi, θ)− EP [mj(Xi, θ)]
}

︸ ︷︷ ︸
Zj,n(θ)

+
√
nEP [mj(Xi, θ)]︸ ︷︷ ︸

hP,j,n(θ)

)
+

d→

{
Zj(θ)+, if EP [mj(Xi, θ)] = 0 (binding)
0 if EP [mj(Xi, θ)] < 0 (slack),

The (pointwise) limiting distribution of the moments changes discontinuously
depending on whether the j-th constraint binds at θ or not.

In general, along a sequence (θn, Pn) such that Zj,n(θn)
d→ Zj and

hPn,j,n(θn)→ hj ∈ [−∞, 0], j = 1, · · · , J1, one has

Tn
d→ T = (Z + h)′+W (Z + h)+,

where h = (h1, · · · , hJ) measures the slackness of the constraints.



Bootstrap Critical Value: AS (2010)
Step 1: At each θ ∈ Θ, select moments that are nearly binding.

ϕj(θ) =

{
0 if 1√

n

∑n
i=1mj(Xi, θ) ≥ −κn

−∞ otherwise.
j = 1, · · · , J1.

where κn is a tuning parameter such as κn =
√

lnn. The GMS (generalized
moment selection) function ϕ(θ) ≡ (ϕ1(θ), · · · , ϕJ(θ)) approximates hP,n(θ)
conservatively.

Step 2: Bootstrap T ∗n based on selected & re-centered moments.

T ∗n(θ) = [
√
n
( 1

n

n∑
i=1

m(X∗i , θ)−
1

n

n∑
i=1

m(Xi, θ)
)

+ ϕn(θ)]′+W (θ)

× [
√
n
( 1

n

n∑
i=1

m(X∗i , θ)−
1

n

n∑
i=1

m(Xi, θ)
)

+ ϕn(θ)]+

Step 3: Let c∗n(θ) be the 1− α quantile of T ∗n(θ) and construct
CSn = {θ ∈ Θ : Tn(θ) ≤ c∗n(θ)}. This CS covers each θ ∈ ΘI(P ) with
probability 1− α asymptotically.



Applications:

Ciliberto & Tamer (2009) study airline markets using a general version of
Example 1. The profit function for airline k in market i is

πk(si, xi, ui; θ) =
{
v′iαk+z′ikβk+w′ikγk+

∑
j 6=k

δkj sij+
∑
j 6=k

z′ijφ
k
j sij+uik

}
sik,

• vi: market characteristics
• zi = (zi1, · · · , ziK): firm characteristics that enter the profits of all firms

in the market
• wi = (wi1, · · · , wiK): wik enters only into firm k’s profit in market i.

Let xi = (vi, z
′
i, w
′
i)
′ be the vector of covariates.

The parameter vector θ includes βk, γk, {δkj , φkj }j 6=k, k = 1, · · · ,K. δkj and φkj
capture the (fixed and variable) impacts of firm j’s entry on firm k’s profit.
These impacts are called the strategic interaction effects.



Applications:

In general, the model does not uniquely determine the probability of
observing a specific equilibrium outcome due to multiple equilibria (recall
Example 1).

CT use (conditional) moment inequalities with singleton events: A = {s̃}

νθ({s̃}|xi) ≤ P (si = s̃|xi) ≤ ν∗θ ({s̃}|xi), s̃ ∈ {0, 1}K .

where
• νθ({s̃}|xi) is the conditional probability of s̃ being a unique equilibrium.

(Note: CT call this function H1.)
• ν∗θ ({s̃}|xi) is the conditional probability of s̃ being a unique equilibrium +

the conditional probability of s̃ being an element of the set of equilibria
(and being always selected).
(Note: CT call this function H2.)

Both νθ, ν∗θ can be calculated from the model using simulation methods.
P (si = s̃|x) can be estimated from data.



Applications:

A sample criterion function can be defined as

Qn(θ) ≡
∑

s̃∈{0,1}K
ws̃(θ)(

1

n

n∑
i=1

νθ(s̃|xi)− P̂n(si = s̃|xi))2
+

+
∑

s̃∈{0,1}K
ws̃(θ)

1

n

n∑
i=1

(P̂n(si = s̃|xi)− ν∗θ (s̃|xi))2
+.

Application
• CT compute a confidence region and project it to each coordinate of

the parameter.
• # of markets (trip between two major airports) was 2,742.
• Firms are American, Delta, United, Southwest, other medium airlines,

and LCCs.
CT find that the LCCs’ impacts tend to be larger in magnitude
(CI=[-19.623, -14.578]) relative to those of big firms such as American
(CI=[-10.914, -8.822]).



Challenges & Recent Developments:

Tuning parameters:
→ Andrews & Barwick (2012) provide suggestions on how the tuning
parameter values for models with up to 10 inequalities. Epstein, Kaido, &
Seo (2015) study a CLT that does not require tuning parameters for some
incomplete models.

Computation:
→ In some examples, one can exploit additional structures, e.g. convexity of
the identified set: Beresteanu & Molinari (2008), Kaido & Santos (2014)

Inference on a single parameter or subvector:
→ Sub-vector inference: Romano & Shaikh (2008), Bugni, Canay, & Shi
(2014), Kaido, Molinari, Stoye (2015)

More general moment restrictions:
→ Conditional moment inequalities and many moment inequalities:
Andrews & Shi (2013), Chernozhukov, Lee, & Rosen (2013), Chernozhukov,
Chetverikov, & Kato (2014), Menzel (2014)



Summary & Future Directions

The partial identification approach is a way to be agnostic about a part of an
economic model. This provides a benchmark.

Alternative ways to study incomplete models
• Complete the model by making a particular assumption on the

selection mechanism.
• Sensitivity analysis?

e.g. parameterize the selection mechanism in such a way that one
extreme is the complete model above (e.g. i.i.d. selection) and the
other extreme is the fully agnostic model.

• Be agnostic about the selection mechanism.

The researcher can assess the sensitivity of the conclusion with respect to
the assumption made on the selection mechanism. This can be done by
filling the gap between the benchmark and a particular way to complete the
model.



Summary & Future Directions

Again, Incomplete models arise in many empirical examples:
• Entries of airlines (Ciliberto & Tamer, 2009)
• English auctions (Haile & Tamer, 2003)
• Mergers in the banking industry (Uetake & Watanabe, 2012)
• Discrete choice under social interactions (Soetvent & Kooreman, 2007)
• Network formations (Sheng, 2014, Miyauchi, 2014)

There have been developments on both econometric theory and
applications.

Further developments can be made through close interactions between
empirical researchers and econometricians.

Thank you. Any comments are welcome.
A copy of the slides will be available from:
http://stat.econ.osaka-u.ac.jp/∼suryo/

http://stat.econ.osaka-u.ac.jp/~suryo/
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